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Abstract—Water distribution is arguably the most important
factor in modern times. The quality of service is nonetheless
taken for granted while requiring regular maintenance and timely
repairs. Therefore, there is an increased demand in efficient
operation requiring modern solutions to age-old problems.
Multiple theoretical and practical approaches exist for leak
detection. In this paper, a model-based approach is extended
with modern concepts from the field of Machine Learning for
improving leak detection accuracy in water distribution systems.

Index Terms—Leak Detection, Model Simulation, Machine
Learning, Water Distribution System

I. INTRODUCTION

Water distribution systems are an essential part of modern
world while being nonetheless taken for granted. The hidden
infrastructure makes it difficult to detect signs that can
predict potential problems over long periods of time, such as
possible contamination of water, an increased energy usage
and environmental damage [1].

The quality of service in utility networks, and the particular
case of water distribution systems, is closely related to the
quality of the infrastructure and efficient operation.

As new technologies emerging from fields such as ICT
(Information and Communications Technology) are being
regarded as possible solutions to the problem of efficient
resource management in present infrastructure, there is a great
deal of research on the multiple theoretical and practical
approaches related to the problem of leak detection in mass
transfer systems [1], [2], [3], [4], [5]. These ICT systems
collect data for monitoring and control purpose and represent
an important layer of infrastructure in water distribution
systems [6].

There are several traditional approaches for monitoring the
state of the system and for detection of problems:

A. Hardware solutions, such as using acoustic sensors,
gas detectors, negative pressure detectors and infrared
thermography, as presented in many literature approaches

B. Software solutions, using modeling and simulation of
flow and pressure and real-time event monitoring such as
SCADA (Supervisory Control And Data Acquisition) systems

In the case of hardware solutions, the advantage is given
by the accurate location of identified leaks. It is however an
expensive solution and not very time efficient.

The modeling solutions take into consideration the
Conservation of Mass that assumes measuring the input
and output from the system and setting a threshold on the
difference to signal a leak. It is possible to measure the
change in pressure/flow, with some considerations regarding
the cost of the required sensors and the accuracy as described
in [7]. In a model-based approach, real-time measurements are
compared with the expected values from a hydraulic model to
highlight possible discrepancies.

Another possibility is the real-time evaluation of the loss of
pressure/flow in measurement nodes. This method is described
in [8].

Recent developments in the field of ICT, allow for an
improved response time for leak detection, considering the
mass adoption of smart meters. The estimation of water
demand from smart meter data allows for efficient operation
and anomaly detection, as described in [9]. While the accuracy
is closely related to the data acquisition solution of choice, it
is usually not possible to estimate the exact location of leaks.

Nonetheless, the aforementioned methods can be
complementary, in the sense that software solutions are
recommended for providing quick detection and a rough
estimation of the location of leaks, while the hardware
solutions can be used for accurate location. The final
objective is to fix the problem in the shortest amount of time
and with minimal costs. This still assumes the role of the
operator, that has to take decisions based on the information
that is provided by the monitoring system.

The integration of Machine Learning in a broad range
of applications provides a foundation for a new paradigm,
where the cognitive process is shifted from the operator
towards AI (Artificial Intelligence). This allows for improved
data processing capabilities, by extracting relevant information
from vast amounts of data [10], [11]. In this paper, we can
identify a modern method for leak detection that integrates
industry standard solutions with Machine Learning algorithms
(C.).

II. RELATED WORK

The traditional approaches that we consider in this paper
are described in numerous papers and are being used and
standardized in the industry. In the case of leak detection using
modeling techniques, there are methods based on steady-state
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operation and transient effects. This is also part of a regulatory
framework, with requirements for the pipelines transporting
liquid and gas in Germany.

There are several possibilities regarding the choice of
internal sensors that can detect a leak, such as pressure sensors,
flow sensors and temperature sensors. In the case of pressure
sensors, that are more commonly installed and generally less
expensive, a leak is regarded as a pressure drop ∆p. When
using flow sensors, the leak can be directly measured and the
accuracy is usually higher, as described in [7]. These methods
work best under steady-state conditions e.g. during the night,
when the consumer demand is low and relatively constant.
There are two types of leak signatures that can be identified:
sudden leaks and gradual leaks [5]. A leak signature analysis
is important to predict false alarms while maintaining accuracy
and a fast response time.

On the other hand, Machine Learning is currently being
used in multiple areas and the concept of learning from the
available data while expanding the knowledge base that is used
for cognitive functions is a kind of self-regulating process. The
adaptability of such methods to various fields allows for a
common set of algorithms that can be used to extract relevant
information from the available data.

According to [12] it is possible to expand the knowledge
base by unsupervised learning, using the k-means algorithm.
Moreover, real-time data processing capabilities are
demonstrated in [13]. Related work in the field of leakage
management, using a Machine Learning based approach, is
presented in [14], [15]. The identification of leaks based on
the transient characteristic is also described in [16].

In this paper, we combine the traditional methods of
dynamic modeling with the more recent solutions from the
field of Machine Learning, in a proactive approach to water
network management.

III. PROPOSED SOLUTION

We propose the fusion between the traditional model based
approach for leak detection and a modern algorithm for
leak signature classification. The real-time monitoring solution
is based on a SCADA system and a storage solution that
records the measured and simulated parameters. The simulated
parameters can be provided by a hydraulic model or by a
previously identified pattern, such as the result of a clustering
algorithm. The modern approach that we propose for leak
detection consists in real-time clustering and classification of
the deviation pattern that is obtained when comparing the
measured and simulated parameters (or when comparing the
normal conditions to the current measurements).

In Fig. 1 is shown an overview of the proposed solution.
There are two alternative methods shown. The first method is
to use a hydraulic model to generate a reference model for
measured data. The second method is to use the data from
a clustering algorithm as a reference, which can reduce the
complexity added by using a calibrated hydraulic model.

The data that we used in this paper is provided by
real measurements using smart meters that were installed

in multiple locations in Italy. The data is represented as
time series for individual consumers, that show the daily
measurements with a sampling time of 1 hour over a
time-frame of multiple months. As the data is not correlated
with the network configuration that we use in this paper, we
use the measurement data that we assign to a single consumer
node and we estimate the flow for the other nodes using a
hydraulic model.

The model of the water distribution system is represented
by an undirected graph and the fundamental laws that define
the water flow through a pipe are used to calculate the state
of the network based on the available data.

The first law is the mass conservation law that states that
the input flow to a node is equal to the output flow:∑

j

qij −
∑
j

dij = 0, i = 1..n (1)

The second law is the equivalent of Ohm’s law for laminar
flow and gives the value of the flow for a network segment
between two adjacent nodes:

qij =
hi − hj
Rij

(2)

Rij =
8ηlij
πr2ij

(3)

The dynamic model is simulated using a first order filter
with the parameters according to the physical characteristics
of the network segment:

Gij(s) =
1

Tijs+ 1
(4)

We used the following notations:
qij - input flow from node i to j
dij - output flow from node i to j
hi - head (pressure) in node i
Rij - resistance to flow in the pipe between node i and j
η - fluid viscosity
lij - length of the pipe between node i and j
rij - radius of the pipe between node i and j
Gij(s) - transfer function of the filter for the pipe between

node i and j
Tij - filter time constant
s - Laplace transform variable

We propose an extension of the algorithm to simulate a
first order dynamic model. The unknown variables that are
calculated by the static model are filtered using a first order
transfer function, with a time constant proportional to the
dimensions of the pipe (length, diameter) as in eq. (3).

We input the measured data for a given node to the
algorithm and the instantaneous results obtained for a single
sample are being fed back to the subsequent iterations, after
being filtered by the corresponding pipe model.

In the same way as there are different types of consumer
patterns (e.g. residential, commercial, industrial), the fault
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conditions can be classified and correlated with these patterns
[17].

In the following paragraphs, we define the following
notations for data sets:

D1 - the original measurement data set, RNN ·ND·24

D2 - the altered measurement data set, RNN ·ND·24

SM1 - the simulated measurements using the original data
set, RNN ·ND·24

SM2 - the simulated measurements using the altered data
set, RNN ·ND·24

DSM - the difference between simulated measurements
using SM1 and SM2, RNN ·ND·24

DCSM - the clusters obtained using the difference data set,
RNN ·NC ·24

DFC - the second stage centroids that represent the average
leak patterns for the entire network, RNDC ·24

where:
NN - number of measurement nodes
ND - number of days
NC - number of centroids for clustering
NDC - number of centroids for second stage clustering
From the perspective of a single node, we consider the

original data (D1) and then we add a simulated leak to the data
set (D2) in order to test different leak scenarios. The data set
for a single node consists in multiple 24-samples time-series
for each day, so it is possible to evaluate the effects of the leak
over a broad range of measurements. Therefore, we subtract
the simulated time-series and the result (RND·24) is input to a
clustering algorithm to extract the leak patterns (RNC ·24).

In order to obtain an extensive classification of the leak
patterns, we consider extending this method to measure
the effects of a leak on multiple nodes in the network.
Therefore, to estimate the data for the adjacent nodes, we use
a simulation model that is described in [7]. The experimental
setup is presented in Fig. 2 and is described in the following
paragraphs:

We define a constant supply pressure at the input node and
output nodes. Then, the measurements from the original data
set (D1) are assigned to a consumer node and the model returns
the estimated values for the remaining nodes. Therefore, the
model simulation of steady-state conditions is run for each
sample in the time-series and the result is a data set with the
simulated parameters (SM1).

This entire simulation is repeated using the altered data set
(D2) and we obtain the second set of simulated parameters
(SM2). The difference data set (DSM) is calculated by
subtracting the two data sets. Then the clustering algorithm
reveals the common patterns for the test scenario (DCSM)
calculated for each individual node. This allows for a cleaner
representation of the data, when compared to the large amount
of original time-series. For a general overview, a second-stage
clustering algorithm aggregates the clusters to define the
general patterns in the network for the analyzed leak scenario.

The difference data set (DSM) can be further used to
generate a fault sensitivity matrix that represents the overall
(average) sensitivity of the network during the analyzed test

scenario, as an extension to the static fault sensitivity analysis
described in [7]. The matrix can be used to show a dynamic
overview of the network sensitivity, as well as an average
sensitivity of the dynamic model simulation.

We define the following test cases to validate the solution:
A. The constant leak scenario is simulated by adding a step

function (constant value) to the measurements within a specific
time frame (we considered the time frame 12-18)

B. The gradual leak scenario is simulated by adding a ramp
function (linear increasing value) to the measurements

C. The sudden leak scenario is simulated by adding an
impulse function (local value) to the measurements at specific
points in time. This scenario is only relevant to pressure
measurements though, which are not available in the data set.

This method uses the data from each measurement node
to find a general pattern for a given leak scenario, that
can be used to evaluate the subsequent leak profiles. This
benefits from accumulating data, by expanding the knowledge
base in the sense of a more general representation for a
given leak scenario, that can include multiple other particular
representations, which are actually part of the same class.

A. Python implementation

The Python language is used for the Machine Learning and
Data Processing algorithms. The data is stored in CSV files,
that represent the associated data for a measurement node. The
parsing returns the data to a numpy array, that is useful for
processing, providing a standard representation libraries that
are designed for solutions in the field of data science. The
most common Machine Learning algorithms are implemented
in the scikit-learn package, that uses scipy, as well as numpy
and matplotlib [18].

For unsupervised learning that we require for pattern
identification in the case of both the consumer demand profile
and the leak signature, we use the k-means algorithm from
the sklearn.cluster package that implements the automatic
grouping of similar data into sets. The method fit implements
the k-means clustering of the input data that in different
shapes. The algorithm has three steps, the first is choosing
the initial centroids that can be a sample from the data set.
The following two steps are used iteratively, until a certain
stop condition is met. The first assigns samples to the nearest
centroid and the second recalculates the centroids by averaging
the previously assigned samples for each centroid. The results,
for example the cluster centroids, can be extracted from the
output.

This way, we apply the algorithm to the original data set and
to the altered data set and we obtain two series of centroids
for each measurement node. Then, we calculate the difference
between the corresponding centroids for each particular node
and we apply the algorithm once again to find the patterns for
each test scenario.
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Fig. 1: Solution overview

Fig. 2: Experimental setup

IV. RESULTS

The purpose of the experiments is to validate the method
for leak pattern identification in a water distribution system.
The figures represent the time-series representation of the leak
patterns during a 24-hour window. This dimension is used as
the original data set is comprised of daily time series for each
node. The values of the centroids represent the average flow
for the particular pattern. In the same way are represented both
the consumer patterns and the simulated leak scenarios.

The patterns for the simulated data using the original data
set (normal conditions) are shown in Fig. 3 for the first
stage clustering of individual consumers. The second stage
clustering is applied on the aggregated first stage clustering
results from each consumer node, using a fixed number of 3
clusters. The result of the second stage clustering is shown in
Fig. 4(a), 5(a).

We present the patterns of simulated data for the proposed
test cases for a better overview of the effects of a leak on
the measured parameters in the network. The difference data
between the normal conditions and the simulated test case is
input to the clustering algorithm that extracts the leak patterns

and provides a clear representation of the particular scenario.
The first scenario (A) is represented in Fig. 4 and the

second scenario (B) is represented in Fig. 5. In the (a) figures,
the results are obtained using the second-stage clustering of
the consumer data, and in the (b) figures, the results are
obtained using the first-stage clustering of the difference data
for the corresponding leak scenario (DSM). The second-stage
clustering of the difference data (DFC) is presented in Fig. 6.

Fig. 3: First-stage clustering with normal conditions

The results show an accurate representation of each test
case, with the cluster centroids obtained from the difference
data set. The shape of the centroids is consistent and only
the absolute value is different, as it represents the deviation
for a particular node in the network. As the first model
simulates only the steady-state conditions, the transient effect
is not emphasized in this simulation. Using a simple first-order
dynamic model that takes into consideration the length of the
pipes, we obtain the centroids in Fig. 6.
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(a) Cluster centroids from simulated data (b) Cluster centroids from difference data

Fig. 4: Clustering of simulated data with test case A

(a) Cluster centroids from simulated data (b) Cluster centroids from difference data

Fig. 5: Clustering of simulated data with test case B

(a) Test case A difference clusters (b) Test case B difference clusters

Fig. 6: Leak scenarios. Second-stage clustering with dynamic model
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V. CONCLUSION

In this paper, the modeling approach and hardware solutions
are being referred as traditional methods for leak detection
in water distribution systems. The methods are nonetheless
valuable for the industry and provide a foundation for
higher-level cognitive solutions that emerge from the field of
Machine Learning. The highly technical problem of evaluating
the cause of the leak using specialized sensors and standard
software algorithms is presented in this paper from a different
perspective that arises from unsupervised learning algorithms.
The shift from the high precision requirements of a real-time
sensor data analysis to the Big Data paradigm can be an
important step for increasing the level of mass adoption for
smart infrastructure, by reducing the costs associated to high
performance hardware solutions.

The proposed solution is based on the unsupervised
clustering of data from smart meters, which allows for a
more accurate evaluation of the root cause of the leak,
as this can range from localized damage (e.g. construction
works accidents) to gradual leaks that can be caused by
aging infrastructure. Each of the aforementioned causes can
be represented as a specific pattern that is identified by the
modern solutions.

In the case of enhancing the traditional methods with
modern solutions, the hydraulic model can provide a reference
to the clustering algorithm, especially in the case where the
data is not available and has to be estimated. On the other
hand, the clustering algorithm can be used for calibrating
the hydraulic model. The clustering algorithm provides a
foundation for more advanced solutions, such as anomaly
detection, and can be adapted to any situation that requires
extracting relevant information from vast amounts of data.
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